-
선형결합BoostCourse 2023. 1. 7. 22:25
From BoostCourse 주재걸
Given vectors $v_1, v_2, \cdot\cdot\cdot, v_p \in \mathbb{R}^n$ and given scalars $c_1, c_2, \cdot\cdot\cdot, c_p$,
$c_1v_1 + \cdot\cdot\cdot + c_pv_p$
is called a linear combination of $v_1, \cdot\cdot\cdot, v_p$ with weights or coefficients $c_1, \cdot\cdot\cdot, c_p$.
Given a set of vectors $v_1, \cdot\cdot\cdot, v_p \in \mathbb{R}^n$,
Span ${v_1, \cdot\cdot\cdot, v_p}$
is defined as the set of all linear combinations of $v_1, \cdot\cdot\cdot, v_p$.
When does the solution exist for $Ax = b$?
The solution exists only when $b \in$ Span ${a_1, a_2, \cdot\cdot\cdot, a_n}$.
1. Matrix Multiplications can be interpreted as Linear Combinations of Vectors
- A linear combination of columns of the left matrix.$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & 1 \end{bmatrix}\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}1 + \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}2 + \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}3$
- A linear combination of rows of the right matrix.
$\begin{bmatrix} 1 & 2 & 3 \end{bmatrix}\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 1 & -1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \end{bmatrix}1 + \begin{bmatrix} 1 & 0 & 1 \end{bmatrix}2 + \begin{bmatrix} 1 & -1 & 1 \end{bmatrix}3$
2. Sum of (Rank-1) Outer Products
example:
$\begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 1 & 1\end{bmatrix}\begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6\end{bmatrix} = \begin{bmatrix} 1 \\ 1 \\ 1\end{bmatrix}\begin{bmatrix} 1 & 2 & 3\end{bmatrix} + \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix}\begin{bmatrix} 4 & 5 & 6\end{bmatrix} = \begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix} + \begin{bmatrix} 4 & 5 & 6 \\ -4 & -5 & -6 \\ 4 & 5 & 6 \end{bmatrix}$
used for covariance matrix in multivariate Gaussian or Gram matrix in style transfer
'BoostCourse' 카테고리의 다른 글
베이즈 통계학 맛보기 (0) 2023.01.11 Optimization (0) 2023.01.11 선형방정식과 선형시스템 (0) 2023.01.07 행렬은 뭔가요? (0) 2023.01.07 벡터가 뭐에요? (0) 2023.01.05